693 research outputs found

    Relation of emissions to air quality for photochemical smog

    Get PDF
    Effective evaluation of air pollution control strategies requires the use of validated and reliable mathemtical models that can relate pollutant emissions to atmospheric air quality. The primary objective of this research program has been to develop a fundamental capability to assess the effectiveness of air pollution control measures in reducing photochemical air pollution. An important aspect of the development has been to simplify the preparation of input data and operational use of the resulting model. The system has been designed to be used by air pollution agencies with relatively little experience in atmospheric physics and chemistry. The assumptions commonly employed in model formulations have been evaluated to ensure a valid representation of the physical and chemical processes in the atmosphere. In the most recent phase of this research the comprehensive photochemical airshed model has been evaluated against data available in the South Coast Air Basin of Southern California. This task was undertaken in collaboration with the California Air Resources Board, Air Quality Modeling Section. A statistical analysis package has been used to evaluate the correspondence of predicted and observed concentrations for the days on which the model was evaluated. An assessment of the EPA ozone isopleth modeling technique has been initiated

    Organic atmospheric particulate material

    Get PDF
    Carbonaceous compounds comprise a substantial fraction of atmospheric particulate matter (PM). Particulate organic material can be emitted directly into the atmosphere or formed in the atmosphere when the oxidation products of certain volatile organic compounds condense. Such products have lower volatilities than their parent molecules as a result of the fact that adding oxygen and/or nitrogen to organic molecules reduces volatility. Formation of secondary organic PM is often described in terms of a fractional mass yield, which relates how much PM is produced when a certain amount of a parent gaseous organic is oxidized. The theory of secondary organic PM formation is outlined, including the role of water, which is ubiquitous in the atmosphere. Available experimental studies on secondary organic PM formation and molecular products are summarized

    A differentiable trajectory approximation to turbulent diffusion

    Get PDF
    The problem of turbulent diffusion is posed as determining the time evolution of the probability density of the concentration given those for the fluid velocity components, sources, and the initial concentration. At each time, all variables are elements of the Hilbert space L^2_R(R^3), and a finite-dimensional approximation based on expansions in orthonormal basis functions is developed. An expression for the joint probability density of all the Fourier coefficients is derived, the evaluation of which is shown to be particularly straightforward. Diffusion of material from a single source in an unbounded mildly turbulent fluid is considered as an application

    Aerosol-cloud interactions in global models of indirect aerosol radiative forcing

    Get PDF
    The sensitivity of cloud optical properties with respect to parameters that affect aerosol activation is examined. Of particular interest are the effect of volatile gases (such as HNO3), slightly soluble and surfactant species. An adiabatic parcel model is used to simulate cloud droplet formation. Cloud optical properties are calculated from these simulations

    Study of the Aerosol Indirect Effect by Large-Eddy Simulation of Marine Stratocumulus

    Get PDF
    A total of 98 three-dimensional large-eddy simulations (LESs) of marine stratocumulus clouds covering both nighttime and daytime conditions were performed to explore the response of cloud optical depth (τ) to various aerosol number concentrations (Na = 50–2500 cm−3) and the covarying meteorological conditions (large-scale divergence rate and SST). The idealized First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangian 1 sounding profiles were used to represent the lightly and heavily drizzling cases, respectively. The first and second aerosol indirect effects are identified. Through statistical analysis, τ is found be to both positively correlated with Na and cloud liquid water path (LWP) with a higher correlation associated with LWP, which is predominantly regulated by large-scale subsidence and SST. Clouds with high LWP occur under low SST or weak large-scale subsidence. Introduction of a small amount of giant sea salt aerosol into the simulation lowers the number of cloud droplets activated, results in larger cloud droplets, and initiates precipitation for nondrizzling polluted clouds or precedes the precipitation process for drizzling clouds. However, giant sea salt aerosol is found to have a negligible effect on τ for lightly precipitating cases, while resulting in a relative reduction of τ of 3%–77% (increasing with Na, for Na = 1000–2500 cm−3) for heavily precipitating cases, suggesting that the impact of giant sea salt is only important for moist and potentially convective clouds. Finally, a regression analysis of the simulations shows that the second indirect effect is more evident in clear than polluted cases. The second indirect effect is found to enhance (reduce) the overall aerosol indirect effect for heavily (lightly) drizzling clouds; that is, τ is larger (smaller) for the same relative change in Na than considering the Twomey (first indirect) effect alone. The aerosol indirect effect (on τ) is lessened in the daytime afternoon conditions and is dominated by the Twomey effect; however, the effect in the early morning is close but slightly smaller than that in the nocturnal run. Diurnal variations of the aerosol indirect effect should be considered to accurately assess its magnitude

    Prediction of bond dissociation energies and transition state barriers by a modified complete basis set model chemistry

    Get PDF
    The complete basis set model chemistries CBS-4 and CBS-q were modified using density functional theory for the geometry optimization step of these methods. The accuracy of predicted bond dissociation energies and transition state barrier heights was investigated based on geometry optimizations using the B3LYP functional with basis set sizes ranging from 3-21G(d,p) to 6-311G(d,p). Transition state barrier heights can be obtained at CBS-q with B3LYP/6-31G(d,p) geometries with rms error of 1.7 kcal/mol within a test set of ten transition state species. The method should be applicable to molecules with up to eight or more heavy atoms. Use of B3LYP/6-311G(d,p) for geometry optimizations leads to further improvement of CBS-q barrier heights with a rms error of 1.4 kcal/mol. For reference, the CBS-QCI/APNO model chemistry was evaluated and is shown to provide very reliable predictions of barrier heights (rms error=1.0 kcal/mol)

    Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming

    Get PDF
    The Upper Green River Basin (UGRB) in Wyoming experiences ozone episodes in the winter when the air is relatively stagnant and the ground is covered by snow. A modeling study was carried out to assess relative contributions of oxides of nitrogen (NO_x) and individual volatile organic compounds (VOCs), and nitrous acid (HONO) in winter ozone formation episodes in this region. The conditions of two ozone episodes, one in February 2008 and one in March 2011, were represented using a simplified box model with all pollutants present initially, but with the detailed SAPRC-07 chemical mechanism adapted for the temperature and radiation conditions arising from the high surface albedo of the snow that was present. Sensitivity calculations were conducted to assess effects of varying HONO inputs, ambient VOC speciation, and changing treatments of temperature and lighting conditions. The locations modeled were found to be quite different in VOC speciation and sensitivities to VOC and NO_x emissions, with one site modeled for the 2008 episode being highly NO_x-sensitive and insensitive to VOCs and HONO, and the other 2008 site and both 2011 sites being very sensitive to changes in VOC and HONO inputs. Incremental reactivity scales calculated for VOC-sensitive conditions in the UGRB predict far lower relative contributions of alkanes to ozone formation than in the traditional urban-based MIR scale and that the major contributors to ozone formation were the alkenes and the aromatics, despite their relatively small mass contributions. The reactivity scales are affected by the variable ambient VOC speciation and uncertainties in ambient HONO levels. These box model calculations are useful for indicating general sensitivities and reactivity characteristics of these winter UGRB episodes, but fully three-dimensional models will be required to assess ozone abatement strategies in the UGRB

    Particle sizing in the electrodynamic balance

    Get PDF
    We report a new technique for sizing particles in the electrodynamic balance. In this technique, the trajectory of a falling particle is followed with a photomultiplier tube. Particle velocities are measured by placing a mask between the particle and the detector. The masked region in the particle trajectory is roughly 0.6 mm wide. Output from the PMT is sampled every millisecond by an A/D converter and stored in a computer. Flight times of several hundred milliseconds are measured and the size is then computed from the particle's terminal velocity. With a modification of the mask, the technique is used to verify the uniformity of the electric field through which the particle is falling. In the present work we use the technique to determine size of polystryrene latex microspheres having nominal diameters of 10 and 20 µ. The technique can be used on any size particle, independent of its charge-to-mass ratio, and provides the size information in a short time

    An Objective Analysis Technique for Constructing Three-Dimensional Urban-Scale Wind Fields

    Get PDF
    An objective analysis procedure for generating mass-consistent, urban-scale three-dimensional wind fields is presented together with a comparison against existing techniques. The algorithm employs terrain following coordinates and variable vertical grid spacing. Initial estimates of the velocity field are developed by interpolating surface and upper level wind measurements. A local terrain adjustment technique, involving solution of the Poisson equation, is used to establish the horizontal components of the surface field. Vertical velocities are developed from successive solutions of the continuity equation followed by an iterative procedure which reduces anomalous divergence in the complete field. Major advantages of the procedure are that it is computationally efficient and allows boundary values to adjust in response to changes in the interior flow. The method has been successfully tested using field measurements and problems with known analytic solutions
    corecore